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Abstract 13 

Introduction: 14 

Recent advances in next-generation phenotyping (NGP) for syndromology, such as 15 

DeepGestalt, have learned phenotype representations of multiple disorders by training 16 

on thousands of patient photos. However, many Mendelian syndromes are still not 17 

represented by existing NGP tools, as only a handful of patients were diagnosed. 18 

Moreover, the current architecture for syndrome classification, e.g., in DeepGestalt, is 19 

trained “end-to-end,” that is photos of molecularly confirmed cases are presented to 20 

the network and a node in the output layer, that will correspond to this syndrome, is 21 

maximized in its activity during training. This approach will not be applicable to any 22 

syndrome that was not part of the training set, and it cannot explain similarities among 23 

patients. Therefore, we propose “GestaltMatch” as an extension of DeepGestalt that 24 

utilizes the similarities among patients to identify syndromic patients by their facial 25 

gestalt to extend the coverage of NGP tools. 26 

Methods: 27 

We compiled a dataset consisting of 21,400 patients with 1,451 different rare disorders. 28 

For each individual, a frontal photo and the molecularly confirmed diagnosis were 29 

available. We considered the deep convolutional neural network (DCNN) in 30 

DeepGestalt as a composition of a feature encoder and a classifier. The last fully-31 

connected layer in the feature encoder was taken as Facial Phenotypic Descriptor 32 

(FPD). We trained the DCNN on the patients’ frontal photos to optimize the FPD and 33 
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to define a Clinical Face Phenotype Space (CFPS). The similarities among each 34 

patient were quantified by cosine distance in CFPS. 35 

Results: 36 

Patients with similar syndromic phenotypes were located in close proximity in the 37 

CFPS. Ranking syndromes by distance in CFPS, we first showed that GestaltMatch 38 

provides a better generalization of syndromic features than a face recognition model 39 

that was only trained on healthy individuals. Moreover, we achieved 87% top-10 40 

accuracy in identifying rare Mendelian diseases that were excluded from the training 41 

set. We further proved that the distinguishability of syndromic disorders does not 42 

correlate with its prevalence.  43 

Conclusions: 44 

GestaltMatch enables matching novel phenotypes and thus complements related 45 

molecular approaches. 46 

 47 

Introduction 48 

Worldwide, rare genetic disorders affect more than 8% of the population. The rarity 49 

and diversity of genetic disorders make it time-consuming and challenging for a 50 

clinician to achieve a correct diagnosis, which is the so-called “diagnostic odyssey.”1 51 

Craniofacial abnormalities present in 30-40% genetic disorders.2 The patients with 52 

these syndromic disorders usually show recognizable faces such as Down syndrome 53 

and Fragile X syndrome. Hence, the facial manifestation provides a crucial visual hint 54 

for a clinician to identify related disorders, which speeds up the diagnostic workup with 55 

gene panel or exome sequencing because it helps reduce the search space of 56 

candidate genes. However, the ability to recognize these syndromic disorders highly 57 

relies on the human expert’s experience. It will be very challenging to make a diagnosis 58 

if the clinician has not seen the ultra-rare disorder or novel disease on the patient. 59 

Therefore, there is an urgent need for the next-generation phenotyping (NGP) tool to 60 

analyze the facial phenotypic information by the aid of a computer. 61 

With the rapid development of machine learning and computer vision, a considerable 62 

number of NGP tools has emerged for analyzing facial dysmorphology with patients’ 63 

2D portrait images.3–10 Clinical Face Phenotype Space (CFPS), formed by the facial 64 

features extracted from facial images, was proposed to perform syndrome 65 

classification on the scale of training on more than 1000 patient photos with eight 66 

different syndromes.3 Moreover, face recognition technologies were improved 67 

significantly in recent years and were at the core of the deep learning revolution in 68 
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computer vision. DeepFace11 demonstrated, for the first time, human-level 69 

performance in identity verification on the Labeled Faces in the Wild dataset.12 As a 70 

result, the face recognition system trained on CCTV images was utilized to match the 71 

patients with one of ten syndromic disorders with intellectual disability.6 In addition, the 72 

facial recognition model from healthy individuals can also be integrated with the CFPS 73 

as a hybrid model, and it was proved to discriminate the facial gestalt on three novel 74 

disease-genes.10 The current state-of-the-art syndrome classification framework 75 

DeepGestalt showed record-breaking results for syndrome classification using facial 76 

phenotypic cues, achieving 91% top-10 accuracy in identifying the correct syndrome 77 

in a test set of 502 images spanning more than 200 syndromes.9 DeepGestalt also 78 

demonstrated strong separation ability for specific syndromes and subtypes, 79 

surpassing human experts’ performance. These results demonstrated the power of a 80 

community-driven platform to gather patients and collect phenotypes. 81 

Although NGP tools have shown the discriminative ability for syndrome classification, 82 

they still suffer from the limited data for rare genetic disorders and limited scalability of 83 

the model. In Figure 1, the two most well-known studies3,9 for multi-syndromes 84 

classification focused mainly on the disease-genes with around 50 up to 500 85 

pathogenic submissions in ClinVar such as UBE3A, SMC1A, and HDAC8 which can 86 

be considered as common amongst the rare. The discriminative facial gestalt was 87 

identified in PACS1, PPM1D, and PHIP, which moved the border towards the genes 88 

with around ten submissions.10 In addition, two unrelated patients with the same 89 

disease-causing mutation in LEMD2 successfully matched by DeepGestalt syndrome 90 

similarity scores.13 However, it is still challenging to push the limit to the ultra-rare 91 

disease-genes fall in the right tail of the distribution because the NGP approaches 92 

require a certain amount of images to learn the facial representation of syndromic 93 

disorder. 94 

Moreover, the end-to-end offline trained architecture is suboptimal for scaling the 95 

model to support new syndromes, to keep the model updated, or to change its original 96 

goals. In order to support a new syndrome in DeepGestalt’s model, the developer has 97 

to go through the six steps described in Supplementary Figure 1. In addition, the model 98 

for multi-syndrome classification cannot be used to quantify the similarities among 99 

patients that is crucial for clinicians to interpret the patient’s phenotype. Therefore, the 100 

main limitations of the current approaches are: network architectures that do not scale 101 

and that do not allow comparison of single patients. 102 

In the nosology of genetic diseases, there has been a discussion about splitters and 103 

lumpers for decades.14 Deep learning approaches cannot only contribute to this 104 
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dialogue by quantifying distinguishability.15 The architecture of a well-performing 105 

artificial neural network that serves as a classifier for syndromic disorders might reveal 106 

something about the complexity of the problem itself. In this work, we consider 107 

DeepGestalt as a composition of an image encoder which converts images to a vector 108 

of numbers, and a classification head which classifies the encoded vector to soft 109 

syndrome probabilities. While the last layer in DeepGestalt consisted of all the 110 

syndromes that the network learned to distinguish, we can refer to the layer preceding 111 

this last one, as the feature layer. 112 

We hypothesize that the new framework, called GestaltMatch, is suitable to 113 

overcome these limitations: 114 

1. Support new syndromes on the fly (without extra training); 115 

2. Support multiple tasks (e.g., matching patients/syndromes etc.); 116 

3. Support new explainability approaches (e.g., showing clusters separability in 117 

the dataset for different categories); 118 

4. Be easily customized and allow low maintenance. 119 

We show that the features vector created by DeepGestalt encoder can be used as a 120 

Facial Phenotypic Descriptor (FPD), which can be further used for syndrome 121 

classification and patient clustering. The concept of GestaltMatch is shown in Figure 122 

2. Moreover, we show that features created using DeepGestalt encoder are better for 123 

matching cases with similar syndromic features, than features extracted from modern 124 

models used for face verification and no syndromic phenotype context. Interestingly, 125 

we show that our new FPD based framework, named GestaltMatch, has improved 126 

scalability for long-tailed syndromes distribution in Figure 1, without the need for 127 

retraining. Furthermore, it provides built-in support for patient matching. We show that 128 

given a facial image, one can use our system to search patients and syndromes with 129 

similar visual phenotypes. Moreover, the similarity between multiple FPDs spans a 130 

metric space between syndromes and can be used for finding new phenotypic series 131 

or discriminate between affected and non-affected subjects. Our new system is a 132 

natural extension to DeepGestalt and can help to develop new visual phenotype 133 

matching applications. 134 

Method 135 

Datasets 136 

We collected the images of subjects with clinically or molecularly confirmed diagnoses 137 

from Face2Gene database. The images with poor quality or duplicated images were 138 
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removed from the dataset. After removing the problematic images, the dataset 139 

consisted of 33,434 images and 21,400 subjects of 1451 syndromes in total. 140 

GestaltMatch aims to evaluate syndromes with different properties. We separated the 141 

syndromes by the number of subjects in each syndrome and whether they were 142 

learned by the DeepGestalt model. The overview of how the dataset was divided is 143 

shown in Supplementary Figure 2. The current DeepGestalt approach can only learn 144 

the syndromes which have more than six subjects. Hence, based on this threshold, we 145 

first separated the syndromes into frequent and rare syndromes. We denoted rare 146 

syndromes as target syndromes because these are the syndromes on which this study 147 

targets. However, not all frequent syndromes can be modeled by DeepGestalt. Some 148 

of them might have no dysmorphic features, so DeepGestalt cannot learn their facial 149 

representation. We denoted these syndromes as non-distinct, whereas the syndromes 150 

supported by DeepGestalt as distinct. The distinct syndromes were used for validating 151 

syndrome prediction and the separation ability of subtypes of a phenotypic series 152 

because these syndromes were known to have facial dysmorphic features, and the 153 

facial features were well recognized by DeepGestalt encoder. For target syndromes, 154 

we aim to prove that GestaltMatch is able to predict the syndrome even if only a few 155 

subjects are publicly available. It is noteworthy that currently, for more than half of all 156 

known disease-genes, less than ten cases with pathogenic mutations have been 157 

submitted to ClinVar (Figure 1). By the type of syndromes, we split the entire dataset 158 

into three datasets: distinct, non-distinct, and target syndromes, and they contained 159 

301, 265, and 885 syndromes, respectively. Non-distinct and target syndromes are not 160 

yet applicable to DeepGestalt. 161 

We further sampled each dataset into a gallery and test set. The gallery is a set of 162 

subjects we intend to match, given a subject from the test set. First of all, 1422 subjects 163 

in distinct and non-distinct datasets were kept out of the training set as a blind set for 164 

validating the DeepGestalt training. The subjects in the blind set were assigned to 165 

either distinct test set or non-distinct test set based on the type of syndromes, and the 166 

subjects not in the blind set were assigned to the gallery of the corresponding dataset. 167 

For the target dataset, we performed 10-fold cross-validation. 90% and 10% of 168 

subjects were assigned to the gallery and test set, respectively. 169 

However, if we only performed the matching within the same dataset, it will not be the 170 

real-world scenario. The galleries of three datasets were later combined as a unified 171 

gallery, and we try to find the matched patients in the unified gallery. We called the 172 

gallery of each dataset as a partial gallery. It is used for the performance comparison 173 

between the DeepGestalt model and GestaltMatch on distinct syndromes because 174 
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DeepGestalt only predicts distinct syndromes, so we should only use the partial gallery 175 

of the distinct set as the gallery. 176 

DeepGestalt encoder 177 

The preprocessing pipeline of DeepGestalt includes points detection, facial alignment 178 

(frontalization), and facial regions cropping. During inference, every facial region crop 179 

is forward passed through a deep convolutional network (CNN), and finally, the results 180 

for all of the image regions are aggregated to the final prediction for the input face 181 

image. DeepGestalt network consists of ten convolutional layers with batch 182 

normalization (BN) and ReLU for embedding the input features. After every Conv-BN-183 

ReLU layer, a max pooling layer is applied for reducing the spatial size while increasing 184 

the semantic representation. The classifier part of the network consists of a fully 185 

connected linear layer with dropout (0.5). In this work, we considered DeepGestalt 186 

architecture as an encoder-classification composition, pipelined during inference. We 187 

chose the last fully connected layer before the softmax classification as the facial 188 

feature representation, resulting in a vector of size 320. Our first hypothesis is that 189 

images with the same molecularly diagnosed syndromes or phenotypic series, which 190 

also share similar phenotypes, can be encoded to similar feature vectors, under some 191 

set of metrics. 192 

Moreover, we claim that the specific design choice of DeepGestalt of using a 193 

predefined, offline trained, linear classifier, can be replaced by other classification 194 

“heads,” for example, k-Nearest Neighbors using cosine distance or a Random Forest. 195 

Interestingly, we found that the data used during the FPD encoder training is essential 196 

to generalize unseen syndromes, subjects, and the space represented by the FPD 197 

encoder. 198 

Descriptor projection - Clinical Face Phenotype Space 199 

Each image was encoded by the DeepGestalt encoder and resulted in a 320-200 

dimensional facial phenotypic descriptor. These facial phenotypic descriptors were 201 

further used to form a 320-dimensional space which is called Clinical Face Phenotype 202 

Space (CFPS), and each image is a point located in CFPS, as shown in Figure 2. The 203 

similarity between the two images is quantified by the cosine distance between them 204 

in CFPS. The smaller the distance is, the higher similarity between two images is. 205 

Therefore, the clusters of subjects in CFPS can represent the similarities among the 206 

different disorders or show the substructure under a phenotypic series. 207 

Evaluation 208 
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To evaluate GestaltMatch, we take the images in the test set as input and position 209 

them in the CFPS that is defined by the images of the gallery. We calculated the cosine 210 

distance between each of the test set images to all the gallery images, and benchmark 211 

the performance by top-k accuracy. For each test image, if an image from another 212 

subject with the same disorder in the gallery is among the top-k nearest neighbors, we 213 

call it a top-k match. We further compare the accuracy of each syndrome in distinct, 214 

non-distinct, and target syndrome subsets to investigate whether GestaltMatch can 215 

extend DeepGestalt to support more syndromes. 216 

Results 217 

Comparing DeepGestalt and face recognition encoders 218 

We first investigated the importance of using a syndromic features encoder rather than 219 

a normal facial features encoder. We compared FPDs created by DeepGestalt 220 

encoder to another encoder with the same architecture, trained on the CASIA-221 

WebFace16 recognition task. We then trained these two encoders and encoded all 222 

images by these two encoders separately. 223 

 Enc-DeepGestalt encoder, trained on the gallery of 301 distinct syndromes. 224 

 Enc-CASIA encoder, trained on the CASIA-WebFace dataset, with the same 225 

architecture of DeepGestalt. 226 

We evaluated the performance by testing distinct and target test sets on the unified 227 

gallery. Table 1 shows the superiority of the features created by DeepGestalt in the 228 

matching performance, which emphasizes the importance of training the encoder on 229 

data with phenotypic cues. The features created by DeepGestalt improves the top-10 230 

accuracy by 30% for the distinct category. Further, the top-10 accuracy was improved 231 

by 43% for the target syndromes, which contains a different, mutually exclusive list of 232 

syndromes. These results suggest that the features encoded by DeepGestalt are a 233 

better fit for the task of syndromes classification than the features encoded by the 234 

modern face recognition model. Moreover, DeepGestalt’s FPD provides a better 235 

generalization than the FPD encoded by the modern face recognition model for unseen 236 

target syndromes. 237 

Comparing distinct and non-distinct FPDs 238 

In order to demonstrate the separability of syndromes with facial dysmorphism, we 239 

applied t-SNE17 to project 4353 images of ten distinct syndromes with the largest 240 

number of subjects and 872 images of ten non-distinct syndromes to two-dimensional 241 

space, and we further calculated Silhouette index18 for both of two datasets. Autism 242 
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syndrome has 1171 images which is the largest non-distinct syndrome.  We did not 243 

take Autism into this analysis because it leads to an extreme imbalance of the number 244 

of subjects to the other non-distinct syndromes. As shown in Supplementary Figure 3, 245 

the FPDs of distinct syndrome show ten clear clusters of subjects. However, when 246 

applying t-SNE projection on subjects of non-distinct syndromes, no clear clusters are 247 

created. Besides, the Silhouette index of distinct syndromes is 0.07, which is higher 248 

than the index of non-distinct syndromes, which is -0.01. The negative Silhouette index 249 

of non-distinct syndromes indicates the poor separation of different syndromes. The 250 

results show the evidence for the phenotypic information encoded in the FPDs created 251 

by DeepGestalt. 252 

GestaltMatch on unseen dysmorphic syndromes 253 

For the purpose of proving GestaltMatch can match the patients with a novel syndrome 254 

unseen to the encoder and to better understand the important characteristics of the 255 

training dataset, we trained four different encoders for comparison. We sampled 21228 256 

images of 13872 subjects with 279 known dysmorphic syndromes. The four encoder 257 

variants Enc-1 to Enc-4 are: 258 

 Enc-1, trained on 90% of the 279 syndromes’ subjects; 259 

 Enc-2, trained on 90% of the 239 smallest syndromes’ subjects; 260 

 Enc-3, trained on 90% of the 239 largest syndromes’ subjects; 261 

 Enc-4, trained on 90% of 239 random syndromes’ subjects. 262 

For each model, we used the remaining 10% of the subjects, sampled across the 263 

syndromes in the training set, as a validation set. Moreover, we used the remaining 40 264 

syndromes, of encoders 2-4 (the eliminated syndromes for each encoder) as an 265 

external test set of unseen distinct syndromes, denoted by Test-Large, Test-Small, 266 

and Test-Random, respectively. For example, the 40 syndromes in Test-Large are the 267 

largest 40 syndromes in 279 distinct syndromes, complementing the 239 syndromes 268 

trained in Enc-2. 269 

To evaluate FPDs generalization ability of each encoder on unseen syndromes, we 270 

compared each of three encoders (Enc-2, Enc-3, and Enc-4), trained on a subset of 271 

239 syndromes, to Enc-1. We used GestaltMatch to estimate the similarity between 272 

the test images to the gallery images, with cosine distance. The results are shown in  273 

Table 2. Enc-1 outperformed Enc-2 when testing on Test-Large, the top-10 accuracy 274 

dropped from 85.28% to 78.49%. The poor performance of Enc-2 could be due to 275 

losing too much training data because Test-Large contained the largest 40 distinct 276 

syndromes consisting of 12429 images, which is more than half of the total images. 277 
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However, Enc-3 and Enc-4 showed comparable results to Enc-1 on Test-Small and 278 

Test-Random, respectively. The top-10 accuracy of Enc-4 was even slightly higher 279 

than Enc-1 when testing on Test-Random. It means that the encoder without the 40 280 

smallest or random distinct syndromes, leads to comparable performance on these 40 281 

syndromes with an encoder trained with these 40 syndromes. Therefore, the results 282 

proved that GestaltMatch could generalize the facial dysmorphic features well on 283 

unseen syndromes, which means we are able to support new syndrome without 284 

retraining the model. 285 

Target syndromes matching accuracy 286 

We defined a syndrome as a target syndrome if it has less than seven subjects in our 287 

dataset. To understand the potential of matching target syndromes, we trained an 288 

encoder on 2215 images of 526 target syndromes, which have more than three 289 

subjects, and less than seven subjects, denoted by Enc-Target. We then compared 290 

Enc-Target to Enc-DeepGestalt trained on the 301 distinct syndromes from the 291 

previous section. Results in  292 

 293 

Table 3 show that Enc-Target with a softmax classifier provides the best results, which 294 

means it learned important phenotypic features. However, in GestaltMatch only, Enc-295 

DeepGestalt, which trained on distinct syndromes and did not see any of the target 296 

syndromes during its training, showed very similar results compared to Enc-Target. 297 

Although the results showed that cosine distance is inferior to a trained softmax 298 

classifier, encoders trained on distinct syndromes provide a similar accuracy on the 299 

unseen subject of target syndromes, compared to encoders trained on these target 300 

syndromes. Therefore, GestaltMatch is a more suitable choice for target syndromes 301 

because it achieved comparable performance to the encoder train on target syndrome, 302 

that means we could save resources for retraining the encoder. Moreover, training the 303 

model on both distinct and target syndromes, which have very few high-quality photos, 304 

might lead to poor performance due to the extremely imbalanced training dataset. 305 

Correlation between prevalence and accuracy 306 

Training an end-to-end network for classifying faces to syndromes such as 307 

DeepGestalt requires many subjects for each of the supported syndromes. Since this 308 

minimum subject requirement is no longer a must for GestaltMatch, we were interested 309 

in whether the matching accuracy of a syndrome correlates with its prevalence. We 310 

used Enc-2 from the previous section, trained on the 239 syndromes out of the full list 311 

of 279 syndromes. To remove the confounding effect from prevalence, we randomly 312 
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down-sampled each of the 40 avoided syndromes by selecting five subjects to the 313 

gallery and one subject to the test set. This experiment is repeated 1000 times. Figure 314 

3 shows the average top-10 accuracy and the prevalence by Orphanet of each 315 

syndrome. We can see that the top-10 accuracy does not correlate with the prevalence. 316 

Several syndromes with low prevalence still perform very well. We can further consider 317 

the accuracy as the distinguishability of the syndrome. Therefore, as distinguishability 318 

does not depend on the prevalence, GestaltMatch can extend DeepGestalt to cover 319 

the ultra-rare disorders with a high distinguishability. 320 

Hierarchical clustering 321 

Phenotypic series is defined as a heterogeneous set of genetic disorders sharing 322 

similar phenotypes. We were interested in testing the visual clusters created with a 323 

two-dimensional projection of FPDs. We sampled subjects from subtypes of four large 324 

phenotypic series in our database: Noonan syndrome, Cornelia De Lange Syndrome 325 

(CDLS), Kabuki syndrome, and Mucopolysaccharidosis (MPS). As demonstrated in 326 

Supplementary Figure 4, using t-SNE projection on the FPDs of 743 subjects, sampled 327 

from the four phenotypic series, resulted in highly separable four clusters composed 328 

of the different subtypes of each phenotypic series. This result is a piece of evidence 329 

for the phenotypic features encoded in the FPDs. 330 

Dysmorphism estimation 331 

We were interested in testing GestaltMatch separation ability between FPDs of 332 

affected subjects with a dysmorphic genetic disorder and non-affected subjects 333 

(without a known genetic disorder). We used t-SNE projections in two different formats: 334 

1. We sampled 1000 faces of healthy individuals and added to the ten largest 335 

app-valid syndromes (4346 subjects) projection; 336 

2. We sampled 1000 faces of healthy individuals and 1000 faces of non-healthy 337 

individuals, evenly across the ten largest app-valid syndromes. 338 

In the first experiment, we projected into eleven classes, while in the second 339 

experiment, we used a binary classification into two clusters. Results in Supplementary 340 

Figure 5 and Supplementary Figure 6 show that in both cases, non-affected subjects 341 

create reasonably separatable clusters, emphasizing the syndromic context encoded 342 

in the FPDs by GestaltMatch. 343 

Discussion 344 

Syndrome matching 345 
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As described in the evaluation section, the GestaltMatch framework can be used to 346 

match syndromes with an input image. The difference from DeepGestalt, lies in the 347 

ability to match unseen syndromes (no patient with these syndromes included in the 348 

encoder’s training set). GestaltMatch framework also allows us to abstract away the 349 

encoding of a dataset from the classification task, and thus support multiple targets 350 

within the same evaluation. For example, one can evaluate both phenotypic series and 351 

subtypes levels within a single inference, or get the most similar patients for each of 352 

the matched syndromes with a minor computational cost which is only a few seconds. 353 

GestaltMatch framework computes the similarity between each of the test set images 354 

to the entire dataset of images. The similarity can be computed using different metrics, 355 

for example, cosine or euclidean distance. Then the results are aggregated according 356 

to the chosen configuration. For example, image similarity can be aggregated at the 357 

patient level or in the syndrome level. Furthermore, filtering according to different 358 

dataset parameters (such as ethnicity, number of affected genes, and age), can be 359 

done to customize the evaluation further. 360 

Patient matching 361 

Matching patients with high similarities of facial dysmorphic features is one of the most 362 

important applications of GestaltMatch. Finding the second patient is always a 363 

challenging problem for most of the physicians when analyzing the novel or extremely 364 

rare Mendelian disorders. There are several online platforms such as Gene Matcher,19 365 

MyGene2, and Exchange Maker,20 which allow physicians to look for similar patients 366 

by uploading phenotypic data, such as HPO terms or genomic information. These 367 

platforms have already matched thousands of patients in the past few years. However, 368 

the automated facial matching technology was not included in any of these platforms 369 

yet, although the facial phenotypes are crucial information for physicians to determine 370 

whether two patients have similar disorders or not. Therefore, there is an urgent need 371 

to support the patient matching approach by analyzing the facial images to facilitate 372 

the matching procedure. 373 

As a proof of concept, we have matched two unrelated patients from different countries, 374 

with the same novel disease successfully by gestalt matching approach.13 They both 375 

shared similar progeria-like features, and later the same de novo disease-causing 376 

mutation in the LEMD2 gene was identified by the diagnostic workup. Although further 377 

analysis with more unrelated patients is needed to be done, the GestaltMatch 378 

approach could be a promising patient match application. Moreover, this approach can 379 

be integrated with the other matching platforms to enhance the matching ability to 380 
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reduce the amount of time further when looking for the second patient with the same 381 

rare disorder. 382 

Ethnic bias 383 

Ethnic bias could influence the performance of GestaltMatch dramatically, especially 384 

in target syndromes, because some patients with the same target syndromes were 385 

from the same paper. Moreover, most of those patients with extremely rare diseases 386 

in the same publication are usually from the same family. It is hard to tell whether they 387 

were matched by the dysmorphic features or the ethnic similarity. Therefore, testing 388 

the matching of subjects of distinct syndromes with different ethnic backgrounds by a 389 

statistical setting to assess the influence of ethnic bias is needed in the future 390 

experiment. 391 

The future of phenotype representation 392 

Using semantic descriptors for similarity estimation is common in many areas of 393 

artificial intelligence, such as face recognition, text understanding, visual tracking, 394 

speech recognition, and more. In recent years, converting structured data into 395 

semantic vectors is becoming common for non-visual phenotype matching as well, for 396 

example, in HPO2VEC21 and NODE2VEC.22 397 

Moreover, to improve the matching accuracy, input signals can be sourced from 398 

different modalities. For example, DeepGestalt uses different regions of a patient face 399 

and aggregates the classification result of each region. Moreover, in PEDIA,23 400 

semantic and visual phenotypic cues are aggregated to improve the prioritization of 401 

variant analysis. 402 

Since semantic descriptors share the same format, one can aggregate these 403 

descriptors from different sources, to allow multimodal signals contribution to the final 404 

accuracy. Due to the generic structure of the GestaltMatch framework and the 405 

abstractions used for encoding datasets, future work can extend the GestaltMatch 406 

framework to support different input types such as text, speech, video, or other sources 407 

of medical imaging, to improve classification accuracy. 408 

Designing a unified classification approach 409 

One of the main challenges of productionizing the GestaltMatch technology lies in the 410 

ability to aggregate different categories. As shown in unseen syndromes analysis, an 411 

internal bias in the encoder’s dataset can deteriorate the matching performance for 412 

both seen and unseen syndromes. Moreover, training a softmax classifier (as in 413 

DeepGestalt) provides better accuracy than a naive cosine distance over FPDs. The 414 
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question raised from these insights is - how to use GestaltMatch for supporting all types 415 

of syndromes? Accurately, future work will test whether it is better to combine 416 

GestaltMatch classification (for unseen or target syndromes) and DeepGestalt (for 417 

distinct syndromes) in a hybrid manner or use a single model to directly classify an 418 

image to all syndromes (using GestaltMatch or DeepGestalt). 419 

Conclusion 420 

GestaltMatch can match syndromes with facial dysmorphism in the CFPS and can be 421 

treated as an extension of DeepGestalt to cover the syndromes which are not 422 

supported in DeepGestalt model. Moreover, the sub-structure under a phenotypic 423 

series or novel diseases can be explored by the clustering of subjects in CFPS. 424 

Eventually, matching patients is one of the most important applications of GestaltMatch. 425 

It could be integrated into other online matching platforms such as MatchMaker 426 

Exchange or MyGene2 further to accelerate the matching process of unknown 427 

diagnosed patients and explore novel phenotype-genotype correlation. 428 
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Figures and tables 492 

 493 

Figure 1: The distribution of the number of pathogenic submissions of each gene in 494 

ClinVar (April, 2020). The lower x-axis shows the disease genes, and the upper x-axis is the 495 

number of genes cumulative from zero on the left. Y-axis is the number of pathogenic 496 

submissions in ClinVar for the respective gene. The most two well-known multi-syndromes 497 

classification studies3,9 mainly focused on the syndromes with relative common in the rare 498 

disorders such as Angelman syndrome (UBE3A), Cornelia de Lange syndrome (NIPBL, 499 

SMC1A, HDAC8), and Treacher Collins syndrome (TCOF1, POLR1D). The three novel 500 

disease-genes (PACS1, PPM1D, and PHIP,) which is proved to show discriminative facial 501 

gestalt,10 were relatively rare compared to the previous studies. Later, the new disease related 502 

to LEMD2 was found by two matching patients with similar facial phenotype.13 LEMD2 even 503 

only had two submissions so far. It shows that NGP approaches keep pushing the limit to more 504 

ultra-rare diseases on the right tail. However, 59% (2562 out of 4335) of disease genes with 505 

less than ten pathogenic submissions in ClinVar. The limited patients of rare disorders are a 506 

challenge to the current NGP approach since it requires a certain number of images to learn 507 

the facial representation of a disorder. 508 
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 509 

Figure 2: Concept of GestaltMatch. The DeepGestalt was trained on 301 distinct syndromes 510 

to learn the facial dysmorphic features. The last fully-connected layer in the feature encoder is 511 

taken as Facial Phenotypic Descriptor (FPD) and can be used to form a Clinical Face 512 

Phenotype Space (CFPS). In this space, the distance between each patient can be considered 513 

as the similarities of facial phenotypic features, which can be further used for syndrome 514 

classification or clustering patients with unknown diagnosis. 515 

 516 

Figure 3: Correlation between syndrome prevalence and average top-10 accuracy. X-axis 517 
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is the birth prevalence by Orphanet, and the unit is 1 in 100,000. For each syndrome, we 518 

randomly selected five subjects to the gallery and one subject to the test set to remove the 519 

confounding effect from prevalence. We further performed the classification on these 40 520 

syndromes for 1000 times. Y-axis is the average top-10 accuracy of the experiments with 1000 521 

times. From this figure, we can see that the top-10 accuracy does not correlate with disease 522 

prevalence. 523 

Table 1: Performance comparison of DeepGestalt and CASIA encoder on distinct, non-524 

distinct and target test set. Enc-DeepGestalt and Enc-CASIA have the same architecture. 525 

Enc-DeepGestalt was initiated with the CASIA-WebFace and further fine-tuned on patients’ 526 

photos. Enc-DeepGestalt outperformed Enc-CASIA on distinct and target syndromes. It shows 527 

the importance of fine-tuning on patients’ photos for learning facial dysmorphic features. 528 

Test set Model 
Syndromes 

Top 1 Top 5 Top 10 Top 30 
Gallery Test 

Distinct Enc-DeepGestalt 1451 168 33.46% 56.11% 66.73% 80.54% 

Distinct Enc-CASIA 1451 168 20.10% 41.49% 51.33% 70.23% 

Non-distinct Enc-DeepGestalt 1451 75 6.44% 11.85% 15.79% 27.99% 

Non-distinct Enc-CASIA 1451 75 7.30% 11.16% 14.25% 20.26% 

Target Enc-DeepGestalt 1451 885 6.84% 12.97% 16.03% 21.69% 

Target Enc-CASIA 1451 885 4.67% 8.49% 11.21% 15.41% 

 529 

Table 2: Results of unseen syndromes classification with four encoders. Each pair of 530 

results below shows the comparison between training without the syndromes in the test set and 531 

with them. For example, Enc-1 was trained on 279 distinct syndromes, and Enc-2 was trained 532 

on the 239 distinct syndromes. The 40 syndromes in Test-Large are the unseen syndromes to 533 

Enc-2. When testing on Test-Random, Enc-4 shows the comparable results to Enc-1. 534 

Test set Model 
Images 

Syndromes Top 1 Top 5 Top 10 Top 30 
Gallery Test 

Test-Large Enc-2 12429 1311 40 32.57% 65.45% 78.49% 97.79% 

Test-Large Enc-1 12429 1311 40 44.85% 74.07% 85.28% 98.32% 

Test-Small Enc-3 532 87 40 37.93% 73.56% 82.76% 96.55% 

Test-Small Enc-1 532 87 40 44.83% 67.82% 85.06% 97.70% 

Test-Random Enc-4 4025 430 40 47.44% 77.44% 87.44% 99.07% 

Test-Random Enc-1 4025 430 40 53.02% 77.67% 86.74% 99.07% 

 535 

 536 

 537 
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Table 3: Comparison of different models for matching target syndromes. Enc-538 

DeepGestalt is the encoder trained on 301 distinct syndromes, and Enc-Target is the encoder 539 

trained on 526 target syndromes. The last row used DeepGestalt method, which is the softmax 540 

in DeepGestalt model to predict the syndrome, so it did not use the gallery. 541 

Model Method 
Images 

Syndromes Top 1 Top 5 Top 10 Top 30 
Gallery Test 

Enc-DeepGestalt GestaltMatch 2215 749 526 14.81% 23.98% 29.57% 41.84% 

Enc-Target GestaltMatch 2215 749 526 14.55% 24.70% 30.04% 42.59% 

Enc-Target DeepGestalt - 749 526 17.35% 26.56% 32.84% 44.30% 

 542 


